Algebras with involution with linear codimension growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normed algebras with involution

We show that most of the theory of Hermitian Banach algebras can be proved for normed ∗-algebras without the assumption of completeness. The condition r(x) ≤ p(x) for all x (where p(x) = r(x∗x)1/2 is the Pták function), which is essential in the theory of Hermitian Banach algebras, is replaced for normed ∗-algebras by the condition r(x + y) ≤ p(x) + p(y) for all x, y. In case of Banach ∗-algebr...

متن کامل

Codimension 1 Linear Isometries on Function Algebras

Let A be a function algebra on a locally compact Hausdorff space. A linear isometry T : A −→ A is said to be of codimension 1 if the range of T has codimension 1 in A. In this paper, we provide and study a classification of codimension 1 linear isometries on function algebras in general and on Douglas algebras in particular.

متن کامل

2-local Mappings on Algebras with Involution

We investigate 2-local ∗-automorphisms, 2-local ∗-antiautomorphisms, and 2-local Jordan ∗-derivations on certain algebras with involution.

متن کامل

ALGEBRAIC ALGEBRAS WITH INVOLUTION susan montgomery

The following theorem is proved: Let R be an algebra with involution over an uncountable field F. Then if the symmetric elements of R are algebraic, R is algebraic. In this paper we consider the following question: "Let R be an algebra with involution over a field F, and assume that the symmetric elements S of R are algebraic over F. Is R algebraic over FT* Previous results related to this ques...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.06.044